(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: AProVEMath
/**
* Abstract class to provide some additional mathematical functions
* which are not provided by java.lang.Math.
*
* @author fuhs
*/
public abstract class AProVEMath {

/**
* Returns <code>base<sup>exponent</sup></code>.
* Works considerably faster than java.lang.Math.pow(double, double).
*
* @param base base of the power
* @param exponent non-negative exponent of the power
* @return base<sup>exponent</sup>
*/
public static int power (int base, int exponent) {
if (exponent == 0) {
return 1;
}
else if (exponent == 1) {
return base;
}
else if (base == 2) {
return base << (exponent-1);
}
else {
int result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result *= base;
}
base *= base;
exponent /= 2;
}
return result;
}
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
AProVEMath.main([Ljava/lang/String;)V: Graph of 215 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 29 rules for P and 6 rules for R.


Combined rules. Obtained 3 rules for P and 0 rules for R.


Filtered ground terms:


1127_0_power_LE(x1, x2, x3) → 1127_0_power_LE(x2, x3)

Filtered duplicate args:


1127_0_power_LE(x1, x2) → 1127_0_power_LE(x2)

Combined rules. Obtained 3 rules for P and 0 rules for R.


Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0])) → COND_1127_1_MAIN_INVOKEMETHOD(x0[0] > 1 && 0 = x0[0] % 2, 1127_0_power_LE(x0[0]))
(1): COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[1] / 2))
(2): 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2])) → COND_1127_1_MAIN_INVOKEMETHOD(x0[2] > 1 && 1 = x0[2] % 2, 1127_0_power_LE(x0[2]))
(3): 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3])) → COND_1127_1_MAIN_INVOKEMETHOD(x0[3] > 1 && !(x0[3] % 2 = 1), 1127_0_power_LE(x0[3]))

(0) -> (1), if ((x0[0] > 1 && 0 = x0[0] % 2* TRUE)∧(1127_0_power_LE(x0[0]) →* 1127_0_power_LE(x0[1])))


(1) -> (0), if ((1127_0_power_LE(x0[1] / 2) →* 1127_0_power_LE(x0[0])))


(1) -> (2), if ((1127_0_power_LE(x0[1] / 2) →* 1127_0_power_LE(x0[2])))


(1) -> (3), if ((1127_0_power_LE(x0[1] / 2) →* 1127_0_power_LE(x0[3])))


(2) -> (1), if ((x0[2] > 1 && 1 = x0[2] % 2* TRUE)∧(1127_0_power_LE(x0[2]) →* 1127_0_power_LE(x0[1])))


(3) -> (1), if ((x0[3] > 1 && !(x0[3] % 2 = 1) →* TRUE)∧(1127_0_power_LE(x0[3]) →* 1127_0_power_LE(x0[1])))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0)) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), =(0, %(x0, 2))), 1127_0_power_LE(x0)) the following chains were created:
  • We consider the chain 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0])), COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2))) which results in the following constraint:

    (1)    (&&(>(x0[0], 1), =(0, %(x0[0], 2)))=TRUE1127_0_power_LE(x0[0])=1127_0_power_LE(x0[1]) ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 1)=TRUE>=(0, %(x0[0], 2))=TRUE<=(0, %(x0[0], 2))=TRUE1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (6) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (7)    (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)







For Pair COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0)) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0, 2))) the following chains were created:
  • We consider the chain 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0])), COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2))) which results in the following constraint:

    (8)    (&&(>(x0[0], 1), =(0, %(x0[0], 2)))=TRUE1127_0_power_LE(x0[0])=1127_0_power_LE(x0[1]) ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (8) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(x0[0], 1)=TRUE>=(0, %(x0[0], 2))=TRUE<=(0, %(x0[0], 2))=TRUECOND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[0]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[0]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[0], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x0[0] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (14)    (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)



  • We consider the chain 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2])), COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2))) which results in the following constraint:

    (15)    (&&(>(x0[2], 1), =(1, %(x0[2], 2)))=TRUE1127_0_power_LE(x0[2])=1127_0_power_LE(x0[1]) ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (15) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraint:

    (16)    (>(x0[2], 1)=TRUE>=(1, %(x0[2], 2))=TRUE<=(1, %(x0[2], 2))=TRUECOND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[2]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[2]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[2], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    (x0[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]x0[2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (20)    (x0[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[4] + [2]x0[2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (21)    (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)



  • We consider the chain 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3])), COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2))) which results in the following constraint:

    (22)    (&&(>(x0[3], 1), !(=(%(x0[3], 2), 1)))=TRUE1127_0_power_LE(x0[3])=1127_0_power_LE(x0[1]) ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (22) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraints:

    (23)    (>(x0[3], 1)=TRUE<(%(x0[3], 2), 1)=TRUECOND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[3], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))


    (24)    (>(x0[3], 1)=TRUE>(%(x0[3], 2), 1)=TRUECOND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[3], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (23) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (25)    (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)



    We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (26)    (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)



    We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (27)    (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)



    We simplified constraint (26) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (28)    (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)



    We simplified constraint (27) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (29)    (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (28) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (30)    (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (29) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (31)    (x0[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (30) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (x0[3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (33)    (x0[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (32) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (34)    (x0[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)







For Pair 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0)) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), =(1, %(x0, 2))), 1127_0_power_LE(x0)) the following chains were created:
  • We consider the chain 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2])), COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2))) which results in the following constraint:

    (35)    (&&(>(x0[2], 1), =(1, %(x0[2], 2)))=TRUE1127_0_power_LE(x0[2])=1127_0_power_LE(x0[1]) ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥))



    We simplified constraint (35) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (36)    (>(x0[2], 1)=TRUE>=(1, %(x0[2], 2))=TRUE<=(1, %(x0[2], 2))=TRUE1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥))



    We simplified constraint (36) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (37)    (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (37) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (38)    (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (38) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (39)    (x0[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    (x0[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (40) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (41)    (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)







For Pair 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0)) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), !(=(%(x0, 2), 1))), 1127_0_power_LE(x0)) the following chains were created:
  • We consider the chain 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3])), COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2))) which results in the following constraint:

    (42)    (&&(>(x0[3], 1), !(=(%(x0[3], 2), 1)))=TRUE1127_0_power_LE(x0[3])=1127_0_power_LE(x0[1]) ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥))



    We simplified constraint (42) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (43)    (>(x0[3], 1)=TRUE<(%(x0[3], 2), 1)=TRUE1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥))


    (44)    (>(x0[3], 1)=TRUE>(%(x0[3], 2), 1)=TRUE1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥))



    We simplified constraint (43) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (45)    (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (44) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (46)    (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (45) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (47)    (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (46) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (48)    (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (47) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (49)    (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (48) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (50)    (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (49) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (51)    (x0[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (50) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (52)    (x0[3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (53)    (x0[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (52) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (54)    (x0[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0)) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), =(0, %(x0, 2))), 1127_0_power_LE(x0))
    • (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)

  • COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0)) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0, 2)))
    • (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
    • (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)
    • (x0[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)
    • (x0[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)

  • 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0)) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), =(1, %(x0, 2))), 1127_0_power_LE(x0))
    • (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)

  • 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0)) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), !(=(%(x0, 2), 1))), 1127_0_power_LE(x0))
    • (x0[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
    • (x0[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [1]   
POL(FALSE) = [1]   
POL(1127_1_MAIN_INVOKEMETHOD(x1)) = x1   
POL(1127_0_power_LE(x1)) = [-1] + x1   
POL(COND_1127_1_MAIN_INVOKEMETHOD(x1, x2)) = x2 + [-1]x1   
POL(&&(x1, x2)) = [1]   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(=(x1, x2)) = [-1]   
POL(0) = 0   
POL(2) = [2]   
POL(!(x1)) = [-1]   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}   
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}   
POL(/(x1, 2)1 @ {1127_1_MAIN_INVOKEMETHOD_1/0, 1127_0_power_LE_1/0}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))

The following pairs are in Pbound:

1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))
COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))

The following pairs are in P:

COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1
/1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[1] / 2))


The set Q is empty.

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE